Abstract
A sequencing batch biofilm reactor (SBBR) was developed to treat dilute formulated rinsate of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] from an agricultural chemical formulation facility. The SBBR was inoculated with Agrobacterium bacteria strain J14a. Hydraulic residence times (HRTs) and different carbon sources were varied to determine their effects on the rate of degradation of atrazine and chemical oxygen demand (COD) by the biomass. The degradation rate of atrazine by J14a was enhanced when a supplemental carbon source was added. An initial concentration of 30 mg/L of atrazine with citrate and sucrose as carbon sources was degraded to less than 1 mg/L within 12 h for a 2 d hydraulic residence time (HRT) at room temperature of 22°C. The first order degradation rate constant for 2 d HRT was approximately 0.44±0.03 h −1. For a HRT of 7 d, more than 90% of atrazine were degraded within 45 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.