Abstract

ABSTRACTMembrane reactors offer a promising configuration for enzymatic delignification processes (lignin modification, removal and utilization). However, membrane fouling reduces the efficiency of filtration and of the entire bioprocess. The flux and retention characteristics of protein-ligninsulfonate model mixtures were investigated. A 5-kDa tubular ceramic membrane achieved a sufficient and constant ligninsulphonate retention of 80–90%. The retention of phenolic monomers (e.g. guaiacol) increased with the ligninsulphonate concentration. Mass transfer-controlled regions were observed in which permeate fluxes could be predicted by the limiting flux model. Finally, the underlying fouling mechanisms were evaluated, revealing a predominance of complete pore blocking and cake filtration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.