Abstract

An integrated Fenton-UASB was investigated for the treatment of 3,4,5-trimethoxybenzaldehyde (TMBA) and Di-bromo-aldehyde manufacturing wastewater. A quadratic model for describing the individual and interactive effects of three variables independent variables (pH, concentration of H2O2 and H2O2/Fe2+) affecting COD abatement in Fenton pretreatment was successfully developed by the response surface methodology. The model proposed was further interfaced with the convex optimization method to optimize the variables in that convex optimization method can guarantee global optimization. A substantial increase in the BOD5/COD ratio of the Fenton treated wastewater was observed, allowing sequent biological treatment feasible. The UASB reactor receiving treated effluent was operated continuously with an organic loading rate (OLR) from initial 3.0g to 24.0g COD/L/d with a stepwise reduction in hydraulic retention time (HRT) for 160days. The degradation of organics in Fenton pretreatment and the anaerobic process was further revealed through GC–MS and FT-IR, respectively. The experimental results highlighted that the potential of integrated Fenton-UASB, providing 80.4% COD removal efficiency accompanied with 96.8% and 100% of TMBA and Di-bromo-aldehyde removal efficiency, respectively even when the applied OLR was up to 16.0g COD/L/d.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.