Abstract

Traditional poststack/prestack migration procedures fail to work well in mountain areas because of the severe variations of the move-out and the low signal to noise ratio (SNR) data. A 3D dynamic programming approach to first-arrival traveltime computation is extended to anisotropic media with rugged topography, which is a key step of the working flow of PSDM in mountain areas. The traveltime computation method based on Fermat’s principle uses simple calculus techniques and a systematic mapping scheme to determine first arrival time on every uniform grid, which has no limitation on large velocity contrast and spatial variation anisotropic parameters. The numerical results of the over-thrust TTI model demonstrate that the traveltime computation method is correct and effective. The imaging results of 3D field data demonstrate that choosing a smooth datum to remove the high wavenumber move-out components and take consider of anisotropy are necessary in mountain areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.