Abstract

We investigate the existence and propagation of solitons in a long-range extension of the quartic Fermi–Pasta–Ulam (FPU) chain of anharmonic oscillators. The coupling in the linear term decays as a power-law with an exponent . We obtain an analytic perturbative expression of traveling envelope solitons by introducing a non linear Schrödinger equation for the slowly varying amplitude of short wavelength modes. Due to the non analytic properties of the dispersion relation, it is crucial to develop the theory using discrete difference operators. Those properties are also the ultimate reason why kink-solitons may exist but are unstable, at variance with the short-range FPU model. We successfully compare these approximate analytic results with numerical simulations for the value which was chosen as a case study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.