Abstract

Transverse spin angular momentum, which appears locally in the structured optical fields, has attracted much attention, owing to its extraordinary properties and potential applications. We show theoretically that, by highly focusing a vector vortex beam with azimuthally varied polarization, it is possible to trap multiple particles simultaneously and manipulate the particles' spin along the azimuthal direction. Both the direction and the magnitude of the spin angular momentum, so the spin torque on the particle, can be varied by changing the state of the input beams. Moreover, the magnitude of the spin torque can be manipulated further by changing the characteristics of the particles. Such results may be exploited in practical optical manipulation, especially for optically induced rotations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.