Abstract

The propagation of ultracold atomic gases through abruptly changing waveguide potentials is examined in the limit of noninteracting atoms. Time-independent scattering calculations of microstructured waveguides with discontinuous changes in the transverse harmonic binding potentials are used to mimic waveguide perturbations and imperfections. Three basic configurations are examined: steplike, barrierlike, and well-like with waves incident in the ground mode. At low energies, the spectra rapidly depart from single moded, with significant transmission and reflection of excited modes. The high-energy limit sees 100% transmission, with the distribution of the transmitted modes determined simply by the overlap of the mode wave functions and interference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.