Abstract

A particle diffusing in a two-dimensional channel of varying width h(x) is considered. It is driven by a force of constant magnitude f, but random orientation across the channel. We suggest the projection technique to study the ratchet effect appearing in this system. Reducing the transverse coordinate, as well as the orientation of the force in the full-dimensional Fokker-Planck equation, we arrive at the generalized Fick-Jacobs equation, describing dynamics of the system in the longitudinal coordinate x only. The additional effective potential -γ(x), calculated within the mapping procedure, exhibits an increasing or decreasing part in the channel shaped by an asymmetric periodic h(x), which determines the appearing ratchet current. As shown on a specific example, random driving in the transverse direction is much more effective than that in the longitudinal direction, at least for quickly flipping orientation of the force. Also, the transverse and the longitudinal driving push the rectified current in opposite directions along the same channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.