Abstract

AbstractA transversal in an latin square is a collection of entries not repeating any row, column, or symbol. Kwan showed that almost every latin square has transversals as . Using a loose variant of the circle method we sharpen this to . Our method works for all latin squares satisfying a certain quasirandomness condition, which includes both random latin squares with high probability as well as multiplication tables of quasirandom groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.