Abstract

A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries containing no pair of entries that share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutually orthogonal latin squares. Here we survey the literature on transversals and related notions. We cover (1) existence and enumeration results, (2) generalisations of transversals including partial transversals and plexes, (3) the special case when the latin square is a group table, (4) a connection with covering radii of sets of permutations, (5) transversals in arrays that generalise the notion of a latin square in various ways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.