Abstract

We constructed a transposon (transposon assisted gene insertion technology, or TAGIT) that allows the random insertion of gfp (or other genes) into chromosomal loci without disrupting operon structure or regulation. TAGIT is a modified Tn5 transposon that uses KanR to select for insertions on the chromosome or plasmid, β-galactosidase to identify in-frame gene fusions, and Cre recombinase to excise the kan and lacZ genes in vivo. The resulting gfp insertions maintain target gene reading frame (to the 5′ and 3′ of gfp) and are integrated at the native chromosomal locus, thereby maintaining native expression signals. Libraries can be screened to identify GFP insertions that maintain target protein function at native expression levels, allowing more trustworthy localization studies. We here use TAGIT to generate a library of GFP insertions in the Escherichia coli lactose repressor (LacI). We identified fully functional GFP insertions and partially functional insertions that bind DNA but fail to repress the lacZ operon. Several of these latter GFP insertions localize to lacO arrays integrated in the E. coli chromosome without producing the elongated cells frequently observed when functional LacI-GFP fusions are used in chromosome tagging experiments. TAGIT thereby faciliates the isolation of fully functional insertions of fluorescent proteins into target proteins expressed from the native chromosomal locus as well as potentially useful partially functional proteins.

Highlights

  • Recent advances in optical microscopy enable fluorescently tagged proteins to be observed with subdiffraction-limited spatial resolution and outstanding temporal resolution

  • After constructing a library of LacI-GFP insertion proteins (LacI-GFPi) using Transposon Assisted Gene Insertion Technology (TAGIT), we identified six sites in LacI that are tolerant to GFP insertion, including those previously identified by epitope insertion mutagenesis

  • Construction of TAGIT TAGIT consists of five elements that together allow identification of in-frame insertions and the subsequent in vivo removal of marker genes to construct a library of gfp insertions within a target gene (Figure 1). (1) At either end of TAGIT are the optimized minimal inverted repeats (19 bp mosaic ends; ME) that allow the hyperactive Tn5 transposase to mediate transposition [32]

Read more

Summary

Introduction

Recent advances in optical microscopy enable fluorescently tagged proteins to be observed with subdiffraction-limited spatial resolution and outstanding temporal resolution. The combination of Photo Activated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) provides a ten-fold gain in spatial resolution and allows individual proteins to be counted [1,2,3,4,5]. Achieving the maximum gain from these methods requires that the behavior of the fluorescently-tagged fusion protein accurately represents that of the native protein. Studies of protein localization in living cells are often compromised by protein overproduction or by partially functional fusion proteins (reviewed by [6,7]). A two-fold overexpression of a partially functional GFP-SpoIIQ fusion protein changes its localization [10]. Overexpression of Bacillus subtilis MinC causes it to accumulate at the cell poles [11,12], when produced under its native expression controls MinC localizes to midcell [13]. Even modest overproduction of some proteins, those involved in signal transduction and cell division, can have deleterious effects on cell viability and on cellular architecture

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.