Abstract
Protoplasts of the basidiomycete, Fomitopsis palustris (formerly Tyromyces palustris), were utilized to study a function of the fungal plasma membrane. Fungal protoplasts exhibited metabolic activities as seen with intact mycelial cells. Furthermore, the uptake of certain compounds into the protoplast cells was quantitatively observed by using non-radioactive compounds. Vanillin was converted to vanillyl alcohol and vanillic acid as major products and to protocatechuic acid and 1,2,4-trihydroxybenzene as trace products by protoplasts prepared from F. palustris. Extracellular culture medium showed no activity responsible for the redox reactions of vanillin. Only vanillic acid was detected in the intracellular fraction of protoplasts. However, the addition of disulfiram, an aldehyde dehydrogenase inhibitor, caused an intracellular accumulation of vanillin, strongly suggesting that vanillin is taken up by the cell, followed by oxidation to vanillic acid. The addition of carbonylcyanide m-chlorophenylhydrazone, which dissipates the pH gradient across the plasma membrane, inhibited the uptake of either vanillin or vanillic acid into the cell. Thus, the fungus seems to possess transporter devices for both vanillin and vanillic acid for their uptake. Since vanillyl alcohol was only observed extracellularly, the reduction of vanillin was thought to be catalyzed by a membrane system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.