Abstract

Entropy optimization or entropy plays vital roles in our understanding of numerous various diverse phenomena running from cosmology to science. Their significance is shown in regions of immediate practical interest like provision of global energy as well as in others of a progressively essential flavor, such as the source of order and unpredictability in nature. The purpose of this communication is to investigate some of ongoing and significant outcomes in a way that not only appeals to the entropy expert but also makes them available to the nonexpert looking for an outline of the field. This communication addresses the entropy optimized flow of hybrid nanofluid between two plates accounting Darcy–Forchheimer porous medium. Energy equation is developed through implementation of first law of thermodynamics subject to radiative flux, dissipation and Joule heating. MHD fluid is rotating with angular frequency [Formula: see text]. Total entropy rate obtained is subject to thermal irreversibility, friction or dissipation irreversibility, magnetic or Joule heating irreversibility and Darcy–Forchheimer irreversibility via second law of thermodynamics. The nonlinear ordinary system (differential equations) is tackled via homotopy method for series solutions. Behaviors of sundry variables on the velocity, skin friction, temperature, Nusselt number and entropy generation rate are discussed and presented through various plots. Schematic flow diagram is presented. Furthermore, skin friction (drag force) and Nusselt number are discussed numerically. Obtained results analyzed that the entropy rate increases subject to higher radiation parameter and Hartmann and Brinkman numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.