Abstract
Temperature-induced Lifshitz transitions have been identified in several materials. Their chemical potential shows a substantial shift with changing temperature. The common feature of these materials is the coexistence of electron and hole pockets in the vicinity of the chemical potential. Here, we report the observation of temperature-induced chemical potential shift and Lifshitz transition in a layered type-II Weyl semimetal, TaIrTe4. The reversal of the polarity of the Hall resistivity and thermoelectric power (TEP) as the temperature increases clearly signal an appreciable shift of the chemical potential and change of the Fermi surface. It is corroborated by the improving agreement between the experimental TEP and the one calculated with temperature-dependent chemical potential. The complete disappearance of an electron pocket, consistent with the change of the Fermi surface when the chemical potential moves downwards, provides an evident signature of a temperature-induced Lifshitz transition in TaIrTe4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.