Abstract

The knowledge of transport properties is crucial to design new devices in electronic and biotechnological industries. Due to the fast growth of the processor speed, molecular simulations have become a robust method to calculate the transport properties. In this work, we show numerical methods such as Green–Kubo formalism to estimate transport properties applied to real liquids. We focus on the study of shear viscosity and thermal conductivity of a water (H2O) and triethylamine (C6H15N) solution which has a potential application for heat exchange inside electronic circuits. The radial distribution function and hydrogen-bond analysis have been made at a broad range of temperatures and mole fractions using equilibrium molecular dynamics, and comparisons with experimental data in the literature have been reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.