Abstract

In this work, we have calculated self-diffusion and shear viscosity, two of the most important transport properties, of the spherical square-well (SW) fluid interacting with potential range λ = 1.5 σ . To this end, we have used a combination of molecular dynamics simulation and the continuous version of the square-well (CSW) intermolecular potential recently proposed by Zerón et al. [Mol. Phys. 116, 3355 (2018)]. In addition to that, we have also determined a number of equilibrium properties, including internal energy, compressibility factor, radial distribution function and coordination number. All properties are evaluated in a wide range of temperatures and densities, including subcritical and supercritical thermodynamic conditions. Results obtained in this work show an excellent agreement with available data reported in the literature and demonstrate that the CSW intermolecular potential can be used in molecular dynamics simulations to emulate SW transport properties with confidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.