Abstract

We present a study on spin-superfluid transport based on an atomistic, classical spin model. Easy-plane ferro- as well as antiferromagnets are considered, which allows for a direct comparison of these two material classes based on the same model assumptions. We find a spin-superfluid transport which is robust against variations of the boundary conditions, thermal fluctuations, and dissipation modeled via Gilbert damping. Though the spin accumulations is smaller for antiferromagnets the range of the spin-superfluid transport turns out to be identical for ferro- and antiferromagnets. Finally, we calculate and explore the role of the driving frequency and especially the critical frequency, where phase slips occur and the spin accumulation breaks down.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.