Abstract
We study the transport properties of Dirac fermions through gapped graphene through a magnetic barrier irradiated by a laser field oscillating in time. We use Floquet theory and the solution of Weber’s differential equation to determine the energy spectrum corresponding to the three regions composing the system. The boundary conditions and the transfer matrix approach are employed to explicitly determine the transmission probabilities for multi-energy bands and the associated conductance. As an illustration, we focus only on the three first bands: the central band T0 (zero photon exchange) and the two first side bands T±1 (photon emission or absorption). It is found that the laser field activates the process of translation through photon exchange. Furthermore, we show that varying the incident angle and energy gap strongly affects the transmission process. The conductance increases when the number of electrons that cross the barrier increases, namely when there is a significant transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.