Abstract

We report on the thermal and electrical conductivities of two liquid silicon-oxygen-iron mixtures (Fe$_{0.82}$Si$_{0.10}$O$_{0.08}$ and Fe$_{0.79}$Si$_{0.08}$O$_{0.13}$), representative of the composition of the Earth's outer core at the relevant pressure-temperature conditions, obtained from density functional theory calculations with the Kubo-Greenwood formulation. We find thermal conductivities $k$ =100 (160) W m$^{-1}$ K$^{-1}$, and electrical conductivities $\sigma = 1.1 (1.3) \times 10^6 \Omega^{-1}$ m$^{-1}$ at the top (bottom) of the outer core. These new values are between 2 and 3 times higher than previous estimates, and have profound implications for our understanding of the Earth's thermal history and the functioning of the Earth's magnetic field, including rapid cooling rate for the whole core or high level of radiogenic elements in the core. We also show results for a number of structural and dynamic properties of the mixtures, including the partial radial distribution functions, mean square displacements, viscosities and speeds of sound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.