Abstract
Treelike structures abound in natural as well as man-made transport systems, which have fascinated multidisciplinary researchers to study the transport phenomena and properties and understand the transport mechanisms of treelike structures for decades. The fluid flow and heat transfer in treelike networks have received an increasing attention over the past decade as the highly efficient transport processes observed in natural treelike structures can provide useful hints for optimal solutions to many engineering and industrial problems. This review paper attempts to present the background and research progress made in recent years on the transport phenomenon in treelike networks as well as technological applications of treelike structures. The subtopics included are optimization of branching structures, scaling laws of treelike networks, and transport properties for laminar flow, turbulent flow, heat conduction, and heat convection in treelike networks. Analytical expressions for the effective transport properties have been derived based on deterministic treelike networks, and the effect of branching parameters on the transport properties of treelike networks has also been discussed. Furthermore, numerical simulation results for treelike microchannel networks are presented as well. The proposed transport properties may be beneficial to understand the transport mechanisms of branching structures and promote the applications of treelike networks in engineering and industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.