Abstract

Shipworms (Bivalvia, Teredinidae) are the principal consumers of wood in marine environments. Like most wood-eating organisms, they digest wood with the aid of cellulolytic enzymes supplied by symbiotic bacteria. However, in shipworms the symbiotic bacteria are not found in the digestive system. Instead, they are located intracellularly in the gland of Deshayes, a specialized tissue found within the gills. It has been independently demonstrated that symbiont-encoded cellulolytic enzymes are present in the digestive systems and gills of two shipworm species, Bankia setacea and Lyrodus pedicellatus, confirming that these enzymes are transported from the gills to the lumen of the gut. However, the mechanism of enzyme transport from gill to gut remains incompletely understood. Recently, a mechanism was proposed by which enzymes are transported within bacterial cells that are expelled from the gill and transported to the mouth by ciliary action of the branchial or food grooves. Here we use in situ immunohistochemical methods to provide evidence for a different mechanism in the shipworm B. setacea, in which cellulolytic enzymes are transported via the ducts of Deshayes, enigmatic structures first described 174 years ago, but whose function have remained unexplained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.