Abstract

This study investigated the transport behaviors of carboxymethyl cellulose (CMC) and starch stabilized multi-walled carbon nanotubes (MWNTs) through a saturated quartz sand column in the presence of electrolytes, model clays, and natural organic matter (humic acid) through column breakthrough experiments and model simulations. Both stabilizers, CMC and starch, greatly enhanced the breakthrough of MWNTs, with a full breakthrough plateau (C/C0) ranging from 0.69 to 0.90 at ionic strength from 0.3 to 10mM. Between the two stabilizers, CMC was more effective in resisting particle deposition, and thus CMC-stabilized MWNTs were more transportable through the medium. While non-stabilized MWNTs were much less transportable and were vulnerable to electrolyte effects (especially Ca2+), the stabilized counterparts were much more resistant to the coagulation effects of electrolytes. The presence of colloidal clay particles showed contrasting effects on the transport of bare and stabilized MWNTs. The full breakthrough C/C0 of bare MWNTs was suppressed by kaolinite and montmorillonite particles from 0.33 to <0.15 with 5mg/L clay, indicating that the presence of both clays enhanced the aggregation and deposition of MWNTs. However, kaolinite particles facilitated the transport of stabilized-MWNTs, while montmorillonite weakened the breakthrough of stabilized MWNTs. Humic acid had less effect on the mobility of stabilized-MWNTs than that of bare MWNTs. The advection-dispersion transport model incorporated with the filtration theory was able to simulate the breakthrough curves and quantitatively interpret the particle deposition. The results can facilitate our understanding of fate and transport of stabilized carbon nanotubes in the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.