Abstract
Transport in weighted networks is dominated by the minimum spanning tree (MST), the tree connecting all nodes with the minimum total weight. We find that the MST can be partitioned into two distinct components, having significantly different transport properties, characterized by centrality--the number of times a node (or link) is used by transport paths. One component, superhighways, is the infinite incipient percolation cluster, for which we find that nodes (or links) with high centrality dominate. For the other component, roads, which includes the remaining nodes, low centrality nodes dominate. We find also that the distribution of the centrality for the infinite incipient percolation cluster satisfies a power law, with an exponent smaller than that for the entire MST. The significance of this finding is that one can improve significantly the global transport by improving a tiny fraction of the network, the superhighways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.