Abstract

Transport in complex networks can describe a variety of natural and human-engineered processes including biological, societal and technological ones. However, how the properties of the source and drain nodes can affect transport subject to random failures, attacks or maintenance optimization in the network remain unknown. In this article, the effects of both the distance between the source and drain nodes and the degree of the source node on the time of transport collapse are studied in scale-free and lattice-based transport networks. These effects are numerically evaluated for two strategies, which employ either transport-based or random link removal. Scale-free networks with small distances are found to result in larger times of collapse. In lattice-based networks, both the dimension and boundary conditions are shown to have a major effect on the time of collapse. We also show that adding a direct link between the source and the drain increases the robustness of scale-free networks when subject to random link removals. Interestingly, the distribution of the times of collapse is then similar to the one of lattice-based networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.