Abstract

We report on the transport and magnetization properties of MgB2 wires fabricated by a powder-in-tube (PIT) technique. Temperature and magnetic-field-dependent resistivity displays a high conductivity and upper critical field Hc2 generally observed in dense samples. The electronic mass anisotropy γ≈1.3±0.15 predicts some texturing in the wire. Our data on transition temperature TC, Hc2, and both magnetic and transport critical current density Jc indicate that MgB2 can be manufactured in a wire form using a PIT technique and required engineering Jc can be achieved on further optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.