Abstract

Kidneys are a major organ for blood filtration and waste elimination and thus play a key role in the transport and clearance of nanoparticles in vivo. The interactions of nanoparticles with different kidney compartments can be precisely regulated by modulating their size, shape and surface chemistry. The quantitative understanding of nanoparticle–kidney interactions at the molecular level is important for improving disease targeting, precisely controlling nanoparticle transport and clearance, and minimizing the potential health hazards of nanomedicines. In this Review, we summarize the glomerular filtration of macromolecules and nanoparticles in the kidney and survey kidney imaging techniques for the study of nanoparticle–kidney interactions ex vivo and in vivo. We investigate the different transport mechanisms of nanoparticles in the kidneys and discuss size, charge and shape dependencies in renal clearance. Nanoparticles are then investigated for the preclinical and clinical detection and treatment of diseases such as kidney dysfunction and cancer. Finally, challenges and opportunities for renal-clearable nanoparticles are highlighted. Interactions of nanoparticles with the kidneys affect their transport, clearance, targeting, therapeutic efficacy and biosafety in the body. This Review discusses nano–bio interactions of nanoparticles in the kidneys and highlights their potential for the detection and treatment of disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.