Abstract

The response of Kousa dogwood (Cornus kousa Buerg.) to extreme stresses was investigated by RGB image analysis in the hot, dry and windy summer in 2007 in Yamaguch, Japan. Results show that tip and margin leaf scorch was observed on many Kousa dogwood trees and clearly dark brown defense barrier appeared on scorched leaves. The defense barrier withdrew back from distal to proximal gradually until successful control of scorching, and left a series of unsuccessful defense traces. By responsive analysis of leaf color homogeneity with RGB image analysis method, a sharp logistic equation was obtained for the relative green/luminance (RGL) value of scorched leaves. By the meteorological analysis, the occurrence of dogwood leaf scorch-back was almost synchronous with the aridity peak period. It suggested that during the sudden aridity increment the extreme water stresses induce the defense response of Kousa dogwood tree to shear the excessive transpiration leaf area, and prevent the rest of the trees from further water loss. Image pixel analysis showed that 40.2% leaf area of sampled dogwood trees was reduced through the partial leaf scorch-back by the end of August in 2007. In contrast, only 13.2% leaf area was reduced from the same trees in 2008, for the reason of sufficient precipitation during first half year. In any case, the Kousa dogwood trees indeed reduced their transpiration surface area and appeared a surface reduction pattern differing from those shedding leaves or withering all the aboveground. Based on desiccation process analysis, it is considered that the interaction of the leaf dried back and the self-defense response was the key of the transpiration surface reduction (TSR) of Kousa dogwood during sudden hot and droughty stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.