Abstract
Nanocellulose-based film, as a novel new type of film mainly made of nanosized cellulose, has demonstrated an ideal combination of renewability and enhanced or novel properties. Considerable efforts have been made to enhance its intrinsic properties or create new functions to expand its applications, such as in food packaging, water treatment or flexible electronics. In this paper, two different types of deep eutectic solvents (guanidine sulfamate-glycerol and guanidine sulfamate-choline chloride) were formulated and applied to prepare cellulose nanocrystals with dialdehyde cellulose (DAC). The effects of reaction conditions including time, temperature and cellulose-DES ratio on the grafting degree and yield were studied. After ultrasonication, two types of CNCs, with an average diameter of 3–5 nm and an average length of 140.7–204.2 nm, were obtained. The synthesized CNCs displayed an enhanced thermal stability compared to pristine cellulose. Moreover, highly transparent (light transmittance higher than 90 %) and water stable nanocellulose based films (a wet tensile strength of higher than 30 MPa after immersing in water for 24 h) were fabricated. Besides, the obtained films exhibited low oxygen transmission rate, showing a good potential application in food packaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.