Abstract

AbstractIn this work, melt blending of fumed nanosilica with cyclic olefin copolymer (COC) was carried out to prepare high strength transparent composites. The effects of various loadings (1, 2, 3 and 5 wt%) of nanosilica on the physical, mechanical, dynamic mechanical, thermal, tribological and optical properties of the COC composites were investigated in detail. The tensile test results showed that the nanocomposite with 3 wt% nanosilica content provides the highest tensile strength (55.6 MPa) compared with the nanocomposite with 5 wt% nanosilica content (54.6 MPa), which is believed to be significantly dependent on better dispersion. Moreover, the glass transition temperature (from tan δ) increased from 184 °C for pure COC to 194.3 °C for the COC composite with 3 wt% nanosilica. The scratch test and nano‐indentation results showed that addition of nanosilica increased the stiffness and hardness of the composite, providing higher scratch resistance and lower frictional coefficient. UV−visible spectroscopy measurements showed that the nanocomposites have excellent optical transparency which is similar to that of the pure COC film. © 2013 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.