Abstract
Coarse Grained Reconfigurable Architectures (CGRAs) are emerging as enabling platforms to meet the high performance demanded by modern applications (e.g. 4G, CDMA, etc.). Recently proposed CGRAs offer runtime parallelism to reduce energy consumption (by lowering voltage/frequency). To implement the runtime parallelism, CGRAs commonly store multiple compile-time generated implementations of an application (with different degree of parallelism) and select the optimal version at runtime. However, the compile-time binding incurs excessive configuration memory overheads and/or is unable to parallelize an application even when sufficient resources are available. As a solution to this problem, we propose Transformation based dynamic Parallelism (TransPar). TransPar stores only a single implementation and applies a series for transformations to generate the bitstream for the parallel version. In addition, it also allows to displace and/or rotate an application to parallelize in resource constrained scenarios. By storing only a single implementation, TransPar offers significant reductions in configuration memory requirements (up to 73% for the tested applications), compared to state of the art compaction techniques. Simulation and synthesis results, using real applications, reveal that the additional flexibility allows up to 33% energy reduction compared to static memory based parallelism techniques. Gate level analysis reveals that TransPar incurs negligible silicon (0.2% of the platform) and timing (6 additional cycles per application) penalty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.