Abstract

A simple moment solution is summarized for the problem of electromagnetic transmission through dielectric-filled slots in a conducting cylindrical shell of arbitrary cross section. The system is excited by a plane-wave polarized transverse electric (TE) to the axis of the shell. The equivalence principle is used to replace the shell and the dielectric by equivalent electric and magnetic surface currents radiating into an unbounded medium. Two different sets of coupled integral equations involving the surface currents are obtained by enforcing the boundary conditions on the tangential components of the total electric and magnetic fields. The method of moments is used to solve the integral equations. Pulses are used for both expansion and testing functions. Special attention is paid to circular and rectangular shells. Results for shell surface current, the internal field, and the aperture field are presented. For the case of air dielectric filling, the results computed using the electric field and/or the magnetic field formulation are in very good agreement with published data. In general, it is observed that the effect of filling a slot with a dielectric is not predictable from a simple theory.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.