Abstract
Using numerical simulations, we systematically investigated the transmission properties of coupled-cavity waveguides (CCWs) formed in two-dimensional photonic-crystal dielectric slabs with a triangular array of air holes. We place emphasis on achieving a quasi-flat impurity band in such CCWs, which is important for the perfect transmission of ultrashort optical pulses. We show that the quasi-flat impurity band can be obtained by controlling the ratio of the air-hole radius to the lattice constant in the triangular lattice. As an example, we demonstrate the perfect transmission of a 500-fs-wide optical pulse through a CCW with a quasi-flat impurity band, indicating the possibility of application to high-speed all-optical communication systems with a maximum bit rate of approximately terabits per second.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.