Abstract
We study the wave transport properties near the Dirac-like point at the Brillouin zone center in two-dimensional dielectric photonic crystals with finite thickness. Both simulations and microwave experiments confirm that the transmittance is nearly inversely proportional to the length (L) of the samples in the propagation direction near the Dirac-like point. This transmittance law comes from the conically shaped dispersion. Since the conical singularity at the Brillouin zone center corresponds to zero refractive index, the field at the Dirac-like point contains a basic component of nearly uniform field. In contrast, the field at the Dirac point in the corner of the hexagonal Brillouin zone contains a basic component of inhomogeneous standing-wave–like field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.