Abstract

The agricultural pest, Homalodisca vitripennis, relies on vibrational communication through plants for species identification, location, and courtship. Their vibrational signal exhibits a dominant frequency between 80 and 120 Hz, with higher frequency, lower intensity harmonics occurring approximately every 100 Hz. However, previous research revealed that not all harmonics are recorded in every signal. Therefore, how the female H. vitripennis vibrational signal changes as it travels through the plant was investigated. Results confirmed that transmission was a bending wave, with decreased signal intensity for increasing distance from the source; moreover, at distances of 50 cm, higher frequencies traveled faster than lower frequencies, suggesting that dispersion of H. vitripennis signal components may enable signaling partners to encode distance. Finally, H. vitripennis generates no detectable airborne signal (pressure wave), yet their low vibrational frequency components are detectable in neighboring plants as a result of leaf-to-air-to-leaf propagation. For instance, with isolated key female signal frequencies, 100 Hz was detected at a 10 cm gap between leaves, whereas 600 Hz was detectable only with a 0.1 cm gap. Together, these results highlight the complexity of vibration propagation in plants and suggest the possibility of the animals using the harmonic content to determine distance to the signaling H. vitripennis source.

Highlights

  • Signaling is rarely done in isolation, but must be evaluated in the context of the environment

  • Results from this study confirm a decrease in vibrational signal transmission intensity and loss of high-frequency components with increasing distances

  • The lower frequency vibrational signals were found to bridge the gap from a leaf to the air to a non-connected leaf, extending the active space beyond the source plant for small vibrationally communicating insects

Read more

Summary

Introduction

Signaling is rarely done in isolation, but must be evaluated in the context of the environment. The distance from the source, over which signal amplitude remains above the detection threshold of potential receivers (active space, Brenowitz 1982), plays a key role for both signal transmission and reception. The signaling active space must be considered. Amplitude alone may not provide enough information to a plantborne receiver; both the amplitude and frequency components of the vibrational signal must be considered within the plant (Mazzoni et al 2014). From the receiver’s perspective, the signal itself

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.