Abstract

The explicit incorporation of uncertainty in transmission network design can help to improve the balance between different and important concerns such as network utilization, demand satisfaction, or dynamic sourcing from lower-cost generation options. The explicit study of mean-risk trade-offs in network design can also better support planners in risk-related decisions. With these motivations, we present in this paper a mean-risk mixed integer linear programming model for transmission network expansion planning. The model has the potential to be used in practical applications, but in the scope of the paper is used to search for network design insights, with a study of loss-averse design of three fundamental network building blocks – an independent design, a radial design, and a meshed design. The study illustrates how different network designs feature different trade-offs between mean cost minimization and risk mitigation, focusing on the impact of network structure, loss aversion, variability, and demand correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.