Abstract

The transmission loss (TL) of membrane-type acoustic metamaterials consisting of small mass and rubber membrane was studied. By establishing a mass-spring equivalent model of metamaterial structural unit, which regards rubber membrane as having the dual role of damping force and spring force, we demonstrated that effective mass density of this membrane-type acoustic metamaterial was negative in the band gap range by theoretical analysis. Based on the theory of plane wave propagation, we studied the sound insulation of this membrane-type acoustic metamaterial. The result showed that membrane-type metamaterial was based on the principle of dipole resonance, which made the membrane-type acoustic metamaterial appear high reflection and low transmission phenomenon so as to achieve the aim of reducing noise. By optimal design, the sound attenuation frequency range of this membrane-type acoustic metamaterial was reduced to 20Hz-100Hz, greatly enhancing the ability of this metamaterial in terms of low-frequency sound insulation. We obtained the distribution of sound intensity at the optimum transmission frequency and the best reflection frequency by coupled acoustic-structural analysis. The best sound insulation frequency was matched with the second order and the third order eigenfrequency of this membrane-type acoustic metamaterial unit, and the strain energy was concentrated at the joint of small mass and the membrane. The total sound insulation of acoustic metamaterial plate was better than the single metamaterial unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.