Abstract
Two novel approaches for the reconstruction of asymmetric fanbeam transmission computed tomography data are discussed. The first, called the hybrid approach, involves a Fourier-based rebinning of the fanbeam data into parallel-beam data, Reconstruction then proceeds by use of filtered backprojection (FBP). The second approach, called generalized fanbeam filtered backprojection (GFFBP), involves direct fanbeam FBP reconstruction of a modified fanbeam sinogram. In both cases, the data are multiplied by weight functions that seek to appropriately normalize redundant data while exploiting them for noise reduction. The GFFBP approach is found to have resolution-noise tradeoffs superior to those of the hybrid approach for low degrees of smoothing, although for the higher levels of smoothing likely to be of interest in practical situations, the difference between the approaches is negligible. However, GFFBP's distance-dependent fanbeam backprojection factor also produced a high-intensity peripheral artifact that impinged slightly upon the object of interest. Because it ultimately makes use of parallel-beam FBP for reconstruction, the hybrid approach avoids this artifact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.