Abstract

The formation of barium hexaferrite from stoichiometric mixtures of BaCO3 and Fe2O3 has been investigated by means of differential thermal analysis and thermogravimetry, x-ray diffraction, and transmission electron microscopy–energy dispersive spectrometry. The first step, which implies decarbonatation and monoferrite formation, includes the formation of various intermediate compounds, which are formed at contact points between BaCO3 and Fe2O3 grains, and implies diffusion of both species. In the second step, barium hexaferrite is formed at interfaces between monoferrite and iron oxide mainly by diffusion of barium through the BF6 lattice into the hematite lattice. This exothermic reaction process leads to nonagglomerated pseudohexagonal platelets with an average particle size very close to the one of the starting powder mixture (∼1 μm).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.