Abstract
Owing to its unique and outstanding physical-chemical properties, diamond is considered to be one of the most important potential materials for applications such as in mechanical, optical, thermal, and electronic devices. Among them, the most attractive application of diamond would be a semiconductor for high temperature and high power electronic devices. To realize such novel devices, a high quality of defect-free single-crystal diamond film is required. Recently, continuous diamond films are found to be able to grow on Pt(lll) substrate. Since the diamond film synthesized on Pt shows a high degree of epitaxy, this approach has drawn the attention of reseafchers in this field and some research results have been reported. However, the heteroepitaxial mechanism is still to be elucidated; in particular, why does diamond grow heteroepitaxially on the Pt substrate and how do the atoms align in the interface between diamond and the Pt substrate? In order to solve those problems, it is very necessary to study the diamond growth mechanism on an atomic scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.