Abstract

ABSTRACTThin films of Co-10 at% Pt, ranging from 15 to 90 nm in thickness, have been DC-sputtered at various temperatures on to carbon-coated mica, carbon substrates on copper grids, or (001) silicon single crystals under 3 μm pressure of Ar, using targets of the alloy in the hexagonal phase, at growth rates of 9 nm/min. The samples were investigated by TEM, using bright-and dark-field imaging, lattice imaging, selected area diffraction and both Fresnel and focussed Lorentz modes. The primary structure of the films was found to be hexagonal, with a = 0.255 nm and c = 0.414 nm. For the samples sputtered at room temperature, the grain sizes were on the order of 0.μm on carbon-coated mica and carbon-substrate grids, and approximately an order of magnitude smaller on silicon substrates. Heavy streaking along the [001] of the hexagonal matrix was observed on diffraction patterns for grains having the [001] parallel to the surface; this streaking was found to be associated with the presence of a high density of faults parallel to the (001). In films sputtered on to carbon-coated mica at 225 °C, where a substantial reduction of the coercivity is observed, the overwhelming majority of the grains had the (001) basal plane parallel to the surface. Lorentz microscopy showed the magnetic domain structure in films grown on silicon to be markedly different from those grown on the carbon substrates, and further changes occurred for the films grown at elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.