Abstract

The photoreceptor connecting cilium bears a unique transmembrane assemblage which stably links cell surface glycoconjugates with the underlying axonemal cytoskeleton. Structural similarities between the photoreceptor connecting cilium and the transition zone of motile cilia suggests that this assemblage may also be present in motile cilia. Using a subcellular fraction enriched in detergent-extracted photoreceptor axonemes, three high molecular mass glycoconjugates (425, 600, and 700 kD) were previously identified as potential components of the assemblage. Through oligosaccharide characterization and binding of a specific monoclonal antibody, we have verified the localization of the 425 kD glycoconjugate to the transmembrane assemblage. Binding of the lectin peanut agglutinin (PNA) to the 425 kD glycoconjugate on nitrocellulose blots, and to isolated detergent-extracted axonemes, was assessed following treatment with the enzymes neuraminidase and O-glycanase. Changes in binding to the 425 kD glycoconjugate precisely paralleled changes in binding to intact axonemes, supporting the hypothesis that the 425 kD glycoconjugate is a component of the transmembrane assemblage. Furthermore, the results suggest that the 425 kD glycoconjugate contains sialated galactose-N-acetylgalactosamine oligosaccharides which are O-linked to the protein backbone. To directly assess the distribution of the 425 kD glycoconjugate, we produced a monoclonal antibody directed against this glycoconjugate. The antibody, K26, recognizes only the 425 kD on transblots of the axoneme fraction. K26 immunoreactivity of intact axonemes is identical to that seen by PNA staining. K26 staining of isolated photoreceptors and whole retina is uniquely localized to the region of the connecting cilium. Thus, in the photoreceptor, the 425 kD is not only a component of the transmembrane assemblage but is also completely restricted to the connecting cilium. Based on morphological similarities, the photoreceptor connecting cilium is thought to be homologous to the transition zone of the motile cilium. As such, we have stained oviduct epithelium with the K26 monoclonal antibody. Immunoreactivity is restricted to the region of the transition zone at the base of motile cilia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.