Abstract

Translucent, high‐performance, mullite ceramics with anisotropic grains were prepared by the spark plasma sintering (SPS) of a powder mixture consisting of commercial mullite powder, which already contained small amounts of alumina (θ and α) and silica (cristobalite) (≤3 wt% in total), to which 2 and 1 wt% of yttria and amorphous silica was admixed, respectively. The combination of low‐viscosity Y2O3–Al2O3–SiO2 transient liquid formation and SPS sintering provided enhanced densification, also provoking anisotropic grain growth (which became exaggerated after 20 min of SPS dwell time), at a relatively low sintering temperature of 1370°C. In this way, it was possible to meet the conflicting demands for obtaining a dense mullite ceramic with anisotropic grains, ensuring good mechanical properties, while preserving a noticeable light transmittance. In terms of mechanical and optical properties, the best results were obtained when SPS dwell times of 5 and 10 min were employed. The as‐sintered samples possessed densities in the range 3.16–3.18 g/cm3, anisotropic grains with an aspect ratio (AR) of 7 and a grain thickness of approximately 0.45 μm, a flexural strength between 350 and 420 MPa, a Vickers indentation toughness and a hardness of approximately 2.45 MPa·m1/2 and 15 GPa, respectively, and an optical transmittance of between 30% and almost 50% in the IR range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.