Abstract

Neonicotinoid seed treatments, typically clothianidin or thiamethoxam, are routinely applied to >80% of maize (corn) seed grown in North America where they are marketed as a targeted pesticide delivery system. Despite this widespread use, the amount of compound translocated into plant tissue from the initial seed treatment to provide protection has not been reported. Our two year field study compared concentrations of clothianidin seed treatments in maize to that of maize without neonicotinoid seed treatments and found neonicotinoids present in root tissues up to 34 days post planting. Plant-bound clothianidin concentrations followed an exponential decay pattern with initially high values followed by a rapid decrease within the first ~20 days post planting. A maximum of 1.34% of the initial seed treatment was successfully recovered from plant tissues in both study years and a maximum of 0.26% was recovered from root tissue. Our findings show neonicotinoid seed treatments may provide protection from some early season secondary maize pests. However, the proportion of the neonicotinoid seed treatment clothianidin translocated into plant tissues throughout the growing season is low overall and this observation may provide a mechanism to explain reports of inconsistent efficacy of this pest management approach and increasing detections of environmental neonicotinoids.

Highlights

  • The neonicotinoids are a relatively new group of systemic insecticides

  • Freezer failure resulted in no active ingredients (AI) extraction past 34 days post planting (DPP) in 2014 samples and resulted in the loss of 33 DPP samples in 2015

  • The neonicotinoid seed treatment (NST) are marketed as a targeted pesticide delivery system [1], our findings demonstrate that NSTs may be a highly inefficient approach to applying active ingredients to plant tissues where insects will ingest them

Read more

Summary

Introduction

The first commercially available compound, imidacloprid (Bayer CropScience), was available in the early 1990s, with other compounds following in the 2000s. They have since become the most widely used insecticide class worldwide [1,2]. Their rapid and widespread adoption has been attributed to low mammalian toxicity, systemic and translaminar properties, lack of resistance upon market entry, increasing restrictions and regulations on older pesticide groups, and potential for a wide variety of application methods [3]. Maize (corn), along with the other three major US field crops (soybean, wheat, and cotton) by area planted [4], all have neonicotinoid seed treatment (NST) registrations using the active ingredients (AI) imidacloprid, clothianidin (CLO) (Bayer CropScience), and thiamethoxam (Syngenta Crop Protection) [5]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.