Abstract

We study the translocation mechanism of a granular chain in a horizontally vibrated saw-tooth channel using MD simulations and macro-scale experiments and show that the translocation speed is independent of the chain length as long as the chain length is larger than the spatial period of the saw-tooth. With the help of simulation, we explore the effect of geometry of the container and frequency and amplitude of vibration as well as chain flexibility on the chain drift speed. We observe that the most efficient transport is achieved when one of the channel walls is shifted with respect to the other wall by an amount equal to half the spatial period of the saw-tooth. We define a persistence length for the chain and show that the translocation speed depends on the ratio of persistence length over the spatial period of the saw-tooth. The optimum translocation occurs when this ratio is about 0.4. We also determine the optimum saw-tooth angle for the translocation of the chain as well as the optimum distance between the two walls. Some properties of this system are similar to those of polymer systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.