Abstract

Regulated nucleo-cytoplasmic transport is crucial for cellular homeostasis and relies on protein interaction networks. In addition, the spatial division into the nucleus and the cytoplasm marks two intracellular compartments that can easily be distinguished by microscopy. Consequently, combining the rules for regulated nucleo-cytoplasmic transport with autofluorescent proteins, we developed novel cellular biosensors composed of glutathione S-transferase, mutants of green fluorescent protein and rational combinations of nuclear import and export signals. Addition of regulatory sequences resulted in three classes of biosensors applicable for the identification of signal-specific nuclear export and import inhibitors, small molecules that interfere with protease activity and compounds that prevent specific protein-protein interactions in living cells. As a unique feature, our system exploits nuclear accumulation of the cytoplasmic biosensors as the reliable readout for all assays. Efficacy of the biosensors was systematically investigated and also demonstrated by using a fully automated platform for high throughput screening (HTS) microscopy and assay analysis. The introduced modular biosensors not only have the potential to further dissect nucleo-cytoplasmic transport pathways but also to be employed in numerous screening applications for the early stage evaluation of potential drug candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.