Abstract
It has been reported that, in submarine landslides down a slope, only a small part of the landslide momentum was transferred to the tsunami while most was lost in the further propagation over the flat bed. The high momentum of landslides off a slope meant a long run-out and a great impact on underwater infrastructure. Nevertheless, little attention has been paid to the variation of momentum of deformable submarine landslides off a slope, i.e. the loss of momentum when the slides flow away from the slope over a flat bottom. In this paper, the translational momentum of deformable submarine granular landslides running down a non-erodible inclined bed is investigated with a two-phase smoothed particle hydrodynamics model. After flowing down the slope, the transport rate and flux of the landslide translational momentum along the propagation over the flat bottom are examined. The effects of physical variables of the slide, particularly the grain size, the initial compaction and the front intrusion angle on the variation of the translational momentum, are explored. Accordingly, scaling relations of the spatial-temporal maximum transport rate and flux of the landslide translational momentum, as well as those of the slide final run-out and the generated leading wave height, are proposed. These scaling relations, although based on numerical data of small-scale granular landslides, demonstrate a preliminary attempt to develop practical expressions in the framework of momentum for estimating the run-out of real submarine landslides and the impact on underwater infrastructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.