Abstract

AbstractOne of the major challenges in organic synthesis is the activation or deconstructive functionalization of unreactive C(sp3)–C(sp3) bonds, which requires using transition or precious metal catalysts. We present here an alternative: the deconstructive lactamization of piperidines without using transition metal catalysts. To this end, we use 3‐alkoxyamino‐2‐piperidones, which were prepared from piperidines through a dual C(sp3)–H oxidation, as transitory intermediates. Experimental and theoretical studies confirm that this unprecedented lactamization occurs in a tandem manner involving an oxidative deamination of 3‐alkoxyamino‐2‐piperidones to 3‐keto‐2‐piperidones, followed by a regioselective Baeyer–Villiger oxidation to give N‐carboxyanhydride intermediates, which finally undergo a spontaneous and concerted decarboxylative intramolecular translactamization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.