Abstract
The effects of added salt (CsOH, CsCl), long-chain carboxylic acid, and long-chain alcohol on the lyotropic liquid crystalline phase behavior in the cesium n-tetradecanoate (CsTD)-water system is reported. The transitional region between the hexagonal (Hα) and lamellar (Lα) phases was the compositional range of focus. Three transitional phases were observed: (i) the ribbon (R) phase, a biaxial phase consisting of cylinders of ellipsoidal cross section; (ii) the viscous isotropic (VI) phase, an isotropic phase thought to consist of interconnected rods on an 1a3d lattice; and (iii) the intermediate (Int) phase, a uniaxial anisotropic phase thought to consist of interconnected rods on a planar lattice. The effect of the additives was to decrease the "interfacial curvature" of the surfactant head group layer by varying head group repulsion and by varying the surfactant tail volume relative to the surfactant head group area. These changes resulted in formation of transitional phases seeming to possess curvature between that of the cylindrical Hα phase and the planar Lα phase. The ionic repulsion between carboxylate head groups was reduced by the addition of CsOH or CsCl, and resulted in destabilization of the VI phase and the formation of the anisotropic Int phase. With the addition of cosurfactants, n-tetradecanoic acid (TDA) and 1-tetradecanol (TDOH), no Int phase was observed. With 7 wt% added TDA the R phase was stabilized up to temperatures of 336 K, above the 330 K temperature limit in the binary CsTD-D2O system. In all four systems, sufficient additive (5-10 wt%) resulted in a transition to the Lα phase, which was stable over a large portion of the compositional range. In order of apparently decreasing mean curvature, the phase sequence is: hexagonal, ribbon, viscous isotropic, intermediate, and lamellar. The inferred structures are remarkably similar to reports in sodium dodecyl sulfate- and alkyl trimethyl ammonium chloride-water binary systems, as well as to liquid crystal formation in block copolymer systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.