Abstract
Modelling fluid turbulence is perhaps one of the hardest problems in Applied Mathematics. In a recent paper, the author argued that the classical Navier–Stokes equation is not sufficient to describe the transition to turbulence, but that a Reiner–Rivlin type equation is needed instead. This is explored here for the simplest of all viscous fluid flows, the Couette flow, which is a simple shear between two moving plates. It is found that at high wavenumbers, the transition to unstable flow at the critical Reynolds number is characterized by a large number of eigenvalues of the Orr–Sommerfeld equation moving into the unstable zone essentially simultaneously. This would generate high-dimensional chaos almost immediately, and is a suggested mechanism for the transition to turbulence. Stability zones are illustrated for the flow, and a simple asymptotic solution confirms some of the features of these numerical results. doi:10.1017/S1446181115000176
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.