Abstract

Classical trajectory simulations of the dynamics of Ar(n).(IHI) with n = 0-20 are performed to investigate the effects of solvation on the transition state dynamics of the I + HI reaction. Initial conditions for the classical trajectories are sampled from the quantum ground-state phase space distribution for Ar(n).(IHI)-, given by the Wigner distribution function. Neumark and co-workers recently reported a shift of the Ar(n).(IHI)- photoelectron spectra to lower electron kinetic energies when the number of argon atoms was increased from 0 to 15. Analogous shifts are found in the present calculations, and excellent agreement between the experimental and calculated shifts is found. Longer lifetimes of the IHI complex and increasing energy transfer between the hydrogen atom and the argon and iodine atoms are also observed as the number of argon atoms is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.